skip to Main Content

Project Bibliography

Bibliographies Grouped by Tag:
24 D | Adjuvants | Agricultural Health Study | AMPA | Analytical Methods | Atrazine | Autism | Biodiversity | Biomarkers | Biomonitoring | Birth Cohort Studies | Birth Defects | Birthweight | Cancer | Children | Chlorpyrifos | Climate Change | Communicating Science | Crop Science | Cumulative Toxicity | Cypermethrin | Cytotoxicity | DDT | Desiccation | Developmental Impacts | Diazinon | Dicamba | Dicamba Part I | Dicamba Part II | Dicamba Part III | Dicamba Watch | Diet | Dietary Risk | Diversified Weed Management/Integrated Pest Management (IPM) | DNA Damage | Economics | Endocrine Disruptors | Endosulfan | Environmental Health | Environmental Impacts | EPA Regulation | Epidemiological Studies | Epigenetic Impacts | Ethics and Environmental Justice | Exposure at School and Public Spaces | Exposure in Pets | Female Reproductive Impacts | Fertility | Food Systems | Full Text Available | Fungicides | Gastrointestinal Impacts | GBH | Gender | Genetically Modified Crops | Genotoxicity | Gestational Length | Glufosinate | Glyphosate | Heartland Region | Herbicide Exposure | Herbicide Industry Labels and User Guides | Herbicide Use | Herbicides | Imidacloprid | Insecticides | Invertebrate Toxicity | Kidney Disease | Liver Damage | Lowdown on Roundup Part I | Lowdown on Roundup Part II | Lowdown on Roundup Part III | Lowdown on Roundup Part IV | Male Reproductive Impacts | Maternal Gut Microbiome | Meta-Analysis or Review Paper | Metolachlor | Microbiome | Miscarriage Rate | Multi-omics | National Cancer Institute | Neonicotinoids | Neurodevelopmental Toxicity | Nitric Oxide | Obesity | Occupational Exposure | Organic | Organic vs Conventional | Organochlorines | Organophosphates | Other Health Risks | Oxamyl | Oxidative Stress | Paraquat | Parkinson's Disease | Persistent Organic Pollutants | Pesticide Drift | Pesticide Effectiveness | Pesticide Exposure | Pesticide Legislation | Pesticide Registration | Pesticide Residues | Pesticide Resistance | Pesticide Toxicity | Pesticide Use | Policy and Politics | Pollinators | Pregestational Obesity | Pregnancy | Public Health | Pyrethroids | Regenerative Agriculture | Remediation | Reproductive Impacts | Resistant Weeds | Risk Assessment | Roundup | Rural Health | Science Team Publication | Seasonal | Soil Health | Sperm Quality | Surfactants | Traizoles | Trends Analysis | Weed Management Systems
Combine bibliography tags from the above list:

Perego et al., 2017

Perego, Maria Chiara, Caloni, Francesca, Cortinovis, Cristina, Schutz, Luis F., Albonico, Marco, Tsuzukibashi, Denise, & Spicer, Leon J., “Influence of a Roundup formulation on glyphosate effects on steroidogenesis and proliferation of bovine granulosa cells in vitro,” Chemosphere, 2017, 188, 274-279. DOI: 10.1016/j.chemosphere.2017.09.007.

ABSTRACT:

Glyphosate (N-phosphonomethyl-glycine) is a non-selective systemic herbicide widely used worldwide. The purpose of this study is to determine if glyphosate alone (GLPH) or in formulation with Roundup (G-RU) can affect granulosa cell proliferation and steroid production. Four experiments were conducted. In Exp. 1, 10 and 300 μg/mL of GLPH had no effect (P > 0.05) on cell numbers, estradiol or progesterone production, whereas 10 and 300 μg/mL of G-RU dramatically decreased (P < 0.05) cell numbers and estradiol and progesterone production. In Exp. 2, G-RU at 0.1 μg/mL had no significant effect whereas G-RU at 10 μg/mL decreased (P < 0.05) GC numbers, progesterone and estradiol production. In the absence of IGF1 but presence of FSH, 1 μg/mL of G-RU decreased (P < 0.05) estradiol production, whereas in the presence of IGF1 and FSH, 1 μg/mL of G-RU increased (P < 0.05) cell numbers, progesterone and estradiol production. In Exp. 3, IGF1 significantly increased cell numbers (by 2.8-fold) and estradiol (by 17.8-fold) and progesterone (by 6.1-fold) production. GLPH at 10 μg/mL alone had no significant effect on FSH-induced (i.e., basal) or FSH plus IGF1-induced cell numbers, estradiol or progesterone production. However, G-RU at 10 μg/mL significantly inhibited FSH plus IGF1-induced cell numbers, estradiol and progesterone production by 65%–91%. In Exp. 4, 48 h treatment of G-RU had no significant effect on viability of attached cells. In conclusion, the present studies demonstrate that GLPH and particularly G-RU may have the potential to impair reproductive function in cattle.


Pembrey et al., 2015

Pembrey, M., Saffery, R., Bygren, L. O., & Network in Epigenetic Epidemiology, “Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research,” Journal of Medical Genetics, 2014, 51(9), 563-572. DOI: 10.1136/jmedgenet-2014-102577.

ABSTRACT:

Mammalian experiments provide clear evidence of male line transgenerational effects on health and development from paternal or ancestral early-life exposures such as diet or stress. The few human observational studies to date suggest (male line) transgenerational effects exist that cannot easily be attributed to cultural and/or genetic inheritance. Here we summarise relevant studies, drawing attention to exposure sensitive periods in early life and sex differences in transmission and offspring outcomes. Thus, variation, or changes, in the parental/ancestral environment may influence phenotypic variation for better or worse in the next generation(s), and so contribute to common, non-communicable disease risk including sex differences. We argue that life-course epidemiology should be reframed to include exposures from previous generations, keeping an open mind as to the mechanisms that transmit this information to offspring. Finally, we discuss animal experiments, including the role of epigenetic inheritance and non-coding RNAs, in terms of what lessons can be learnt for designing and interpreting human studies. This review was developed initially as a position paper by the multidisciplinary Network in Epigenetic Epidemiology to encourage transgenerational research in human cohorts. FULL TEXT


Owagboriaye et al., 2017

Owagboriaye, Folarin O., Dedeke, Gabriel A., Ademolu, Kehinde O., Olujimi, Olarenwaju O., Ashidi, Joseph S., & Adeyinka, Aladesida A., “Reproductive toxicity of Roundup herbicide exposure in male albino rat,” Experimental and Toxicologic Pathology, 2017, 69(7), 461-468. DOI: 10.1016/j.etp.2017.04.007.

ABSTRACT:

The incidence of infertility in human is on the increase and the use of Roundup herbicide and presence of its residues in foodstuff is a major concern. This study therefore aim to assess the effect of Roundup on the reproductive capacity of 32 adult male albino rats randomized into 4 groups of 8 rats per group orally exposed to Roundup at 3.6mg/kg body weight(bw), 50.4mg/kgbw and 248.4mg/kgbw of glyphosate concentrations for 12 weeks while the control group was given distilled water. Serum level of reproductive hormone (testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin), oxidative stress indices in the testicular tissue, epididymal sperm morphology assessment and testicular histopathology of the rats were used as a diagnostic marker of reproductive dysfunction. Significant (p<0.05) alterations in the level of all the reproductive hormones and oxidative stress markers assayed were observed in rats exposed to Roundup. Significant reductions (p<0.05) in sperm count, percentage motility and significant (p<0.05) increased in abnormal sperm cells were observed in the exposed rats. Histopathologically, severe degenerative testicular architectural lesions were seen in the Roundup exposed rats. Roundup may interfere with spermatogenesis and impair fertility in male gonad.


Owagboriaye et al., 2019

Owagboriaye, F., Dedeke, G., Ademolu, K., Olujimi, O., Aladesida, A., & Adeleke, M., “Comparative studies on endogenic stress hormones, antioxidant, biochemical and hematological status of metabolic disturbance in albino rat exposed to roundup herbicide and its active ingredient glyphosate,” Environmental Science and Pollution Research International, 2019. DOI: 10.1007/s11356-019-04759-1.

ABSTRACT:

There have been growing concerns and uncertainty about reports attributing the metabolic disturbance induced by a commercial formulation of glyphosate-based herbicide to its active ingredient. We therefore compared the effects of Roundup Original(R) and its active ingredient glyphosate on some hypothalamic-pituitary-adrenal (HPA) hormones and oxidative stress markers, biochemical and hematological profiles in 56 adult male albino rats randomly assigned to seven treatments of eight rats per treatment. The rats were orally exposed to Roundup Original(R) and its active ingredient daily at 3.6 mg/kg body weight (bw), 50.4 and 248.4 mg/kgbw of glyphosate equivalent concentrations for 12 weeks, while control treatment received distilled water. Serum concentrations of corticosterone, adrenocorticotropic hormone, aldosterone and concentration of oxidative stress marker, biochemical and hematological profiles in the blood were determined. Concentrations of corticosterone and aldosterone were significantly higher (p < 0.05) in rats treated with Roundup in a dose-dependent manner. Reduced glutathione concentration, catalase, and butyrylcholinesterase activities reduced significantly in rats treated with Roundup relative to those treated with the active ingredient. Lipid peroxidation was observed in rats treated with Roundup. Biochemical and hematological profiles of rats treated with Roundup were significantly altered (p < 0.05). However, significant changes in only acid phosphatase, lactase dehydrogenase, bilirubin, and white blood cells in rats treated with the active ingredient at 50.4 mg/kg were observed. The severe metabolic disturbance and stress observed in rats treated with the commercial formulation of Roundup herbicide may not be associated with the mild changes induced by the active ingredient.


Olsson and Brandt, 1988

Olsson, H., & Brandt, L., “Risk of non-Hodgkin’s lymphoma among men occupationally exposed to organic solvents,” Scandinavian Journal of Work and Environmental Health, 1988, 14(4), 246-251.

ABSTRACT:

An occupational history of exposure to organic solvents, defined as daily occupational exposure for at least one year, was more common among 167 men with newly diagnosed non-Hodgkin’s lymphoma than among 130 healthy referents from the general population (38 versus 14%). Categorization in five-year age groups gave 3.3 as a Mantel-Haenszel estimate of the odds ratio (95% CI 1.9-5.8). The odds ratio was 6.5 (95% CI 3.2-13.3) for localized supradiaphragmatic tumors and 2.3 (95% CI 1.3-4.3) for other lymphoma presentations. In a logistic model including age and organic solvent, phenoxy acid, and chlorophenol exposure, it could be shown that solvent exposure was an independent risk factor and that no important interaction occurred between the risk factors. With increasing duration of exposure there was a significantly increased risk of lymphoma, a finding implying a dose-response relationship. There was no significant difference in tumor histology between the exposed and unexposed patients. These findings support the concept that occupational exposure to organic solvents is a risk factor for non-Hodgkin’s lymphoma. The results also confirm a strong association between such exposure and an initial supradiaphragmatic location of the lymphomas.

 


Oates et al., 2014

Oates, Liza, Cohen, Marc, Braun, Lesley, Schembri, Adrian, & Taskova, Rilka, “Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet,” Environmental Research, 2014, 132, 105-111. DOI: 10.1016/j.envres.2014.03.021.

ABSTRACT:

BACKGROUND: Conventional food production commonly uses organophosphate (OP) pesticides, which can have negative health effects, while organic food is deemed healthier because it is produced without these pesticides. Studies suggest that organic food consumption may significantly reduce OP pesticide exposure in children who have relatively higher pesticide exposure than adults due to their different diets, body weight, behaviour and less efficient metabolism.

OBJECTIVES: A prospective, randomised, crossover study was conducted to determine if an organic food diet reduces organophosphate exposure in adults.

METHODS: Thirteen participants were randomly allocated to consume a diet of at least 80% organic or conventional food for 7 days and then crossed over to the alternate diet. Urinary levels of six dialkylphosphate metabolites were analysed in first-morning voids collected on day 8 of each phase using GC–MS/MS with detection limits of 0.11–0.51μg/L.

RESULTS: The mean total DAP results in the organic phase were 89% lower than in the conventional phase (M=0.032 [SD=0.038] and 0.294 [SD=0.435] respectively, p=0.013). For total dimethyl DAPs there was a 96% reduction (M=0.011 [SD=0.023] and 0.252 [SD=0.403] respectively, p=0.005). Mean total diethyl DAP levels in the organic phase were half those of the conventional phase (M=0.021 [SD=0.020] and 0.042 [SD=0.038] respectively), yet the wide variability and small sample size meant the difference was not statistically significant.

CONCLSUIONS: The consumption of an organic diet for one week significantly reduced OP pesticide exposure in adults. Larger scale studies in different populations are required to confirm these findings and investigate their clinical relevance.


Nougadère et al., 2012

Nougadère, Alexandre, Sirot, Véronique, Kadar, Ali, Fastier, Antony, Truchot, Eric, Vergnet, Claude, Hommet, Frédéric, Baylé, Joëlle, Gros, Philippe, & Leblanc, Jean-Charles, “Total diet study on pesticide residues in France: Levels in food as consumed and chronic dietary risk to consumers,” Environment International, 2012, 45, 135-150. DOI: 10.1016/j.envint.2012.02.001.

ABSTRACT:

Chronic dietary exposure to pesticide residues was assessed for the French population using a total diet study (TDS) to take into account realistic levels in foods as consumed at home (table-ready). Three hundred and twenty-five pesticides and their transformation products, grouped into 283 pesticides according to their residue definition, were sought in 1235 composite samples corresponding to 194 individual food items that cover 90% of the adult and child diet. To make up the composite samples, about 19,000 food products were bought during different seasons from 2007 to 2009 in 36 French cities and prepared according to the food preparation practices recorded in the individual and national consumption survey (INCA2). The results showed that 37% of the samples contained one or more residues. Seventy-three pesticides were detected and 55 quantified at levels ranging from 0.003 to 8.7mg/kg. The most frequently detected pesticides, identified as monitoring priorities in 2006, were the post-harvest insecticides pirimiphos-methyl and chlorpyrifos-methyl—particularly in wheat-based products—together with chlorpyrifos, iprodione, carbendazim and imazalil, mainly in fruit and fruit juices. Dietary intakes were estimated for each subject of INCA2 survey, under two contamination scenarios to handle left-censored data: lower-bound scenario (LB) where undetected results were set to zero, and upper-bound (UB) scenario where undetected results were set to the detection limit. For 90% of the pesticides, exposure levels were below the acceptable daily intake (ADI) under the two scenarios. Under the LB scenario, which tends to underestimate exposure levels, only dimethoate intakes exceeded the ADI for high level consumers of cherry (0.6% of children and 0.4% of adults). This pesticide, authorised in Europe, and its metabolite were detected in both cherries and endives. Under the UB scenario, that overestimates exposure, a chronic risk could not be excluded for nine other pesticides (dithiocarbamates, ethoprophos, carbofuran, diazinon, methamidophos, disulfoton, dieldrin, endrin and heptachlor). For these pesticides, more sensitive analyses of the main food contributors are needed in order to refine exposure assessment.


Nordstrom et al., 1998

Nordstrom, M., Hardell, L., Magnuson, A., Hagberg, H., & Rask-Anderson, A., “Occupational exposures, animal exposure and smoking as risk factors for hairy cell leukaemia evaluated in a case-control study,” British Journal of Cancer, 1998, 77(11), 2048-2052.

ABSTRACT:

To evaluate occupational exposures as risk factors for hairy cell leukaemia (HCL), a population-based case-control study on 121 male HCL patients and 484 controls matched for age and sex was conducted. Elevated odds ratio (OR) was found for exposure to farm animals in general: OR 2.0, 95% confidence interval (Cl) 1.2-3.2. The ORs were elevated for exposure to cattle, horse, hog, poultry and sheep. Exposure to herbicides (OR 2.9, Cl 1.4-5.9), insecticides (OR 2.0, Cl 1.1-3.5), fungicides (OR 3.8, Cl 1.4-9.9) and impregnating agents (OR 2.4, Cl 1.3-4.6) also showed increased risk. Certain findings suggested that recall bias may have affected the results for farm animals, herbicides and insecticides. Exposure to organic solvents yielded elevated risk (OR 1.5, Cl 0.99-2.3), as did exposure to exhaust fumes (OR 2.1, Cl 1.3-3.3). In an additional multivariate model, the ORs remained elevated for all these exposures with the exception of insecticides. We found a reduced risk for smokers with OR 0.6 (Cl 0.4-1.1) because of an effect among non-farmers.  FULL TEXT


Nevison, 2014

Nevison, C. D., “A comparison of temporal trends in United States autism prevalence to trends in suspected environmental factors,” Environmental Health, 2014, 13, 73. DOI: 10.1186/1476-069X-13-73.

ABSTRACT:

BACKGROUND: The prevalence of diagnosed autism has increased rapidly over the last several decades among U.S. children. Environmental factors are thought to be driving this increase and a list of the top ten suspected environmental toxins was published recently.

METHODS: Temporal trends in autism for birth years 1970–2005 were derived from a combination of data from the California Department of Developmental Services (CDDS) and the United States Individuals with Disabilities Education Act (IDEA). Temporal trends in suspected toxins were derived from data compiled during an extensive literature survey. Toxin and autism trends were compared by visual inspection and computed correlation coefficients. Using IDEA data, autism prevalence vs. birth year trends were calculated independently from snapshots of data from the most recent annual report, and by tracking prevalence at a constant age over many years of reports. The ratio of the snapshot:tracking trend slopes was used to estimate the “real” fraction of the increase in autism.

RESULTS: The CDDS and IDEA data sets are qualitatively consistent in suggesting a strong increase in autism prevalence over recent decades. The quantitative comparison of IDEA snapshot and constant-age tracking trend slopes suggests that ~75-80% of the tracked increase in autism since 1988 is due to an actual increase in the disorder rather than to changing diagnostic criteria. Most of the suspected environmental toxins examined have flat or decreasing temporal trends that correlate poorly to the rise in autism. Some, including lead, organochlorine pesticides and vehicular emissions, have strongly decreasing trends. Among the suspected toxins surveyed, polybrominated diphenyl ethers, aluminum adjuvants, and the herbicide glyphosate have increasing trends that correlate positively to the rise in autism.

CONCLUSIONS: Diagnosed autism prevalence has risen dramatically in the U.S over the last several decades and continued to trend upward as of birth year 2005. The increase is mainly real and has occurred mostly since the late 1980s. In contrast, children’s exposure to most of the top ten toxic compounds has remained flat or decreased over this same time frame. Environmental factors with increasing temporal trends can help suggest hypotheses for drivers of autism that merit further investigation. FULL TEXT


Lu et al., 2018

Lu, L., Su, H., Liu, Q., & Li, F., “Development of a Luminescent Dinuclear Ir(III) Complex for Ultrasensitive Determination of Pesticides,” Analytical Chemistry, 2018, 90(19), 11716-11722. DOI: 10.1021/acs.analchem.8b03687.

ABSTRACT:

To improve the G-quadruplex specificity of Ir(III) complexes, a novel dinuclear Ir(III) complex (Din Ir(III)-1) was designed and synthesized through connecting two mononuclear Ir(III) complexes via a diphenyl bridge. Din Ir(III)-1 presents 3.4-4.1-fold enhancements for G-quadruplex relative to ssDNA and 4.3-5.3-fold enhancements relative to dsDNA in luminescence intensity, respectively, demonstrating an excellent G-quadruplex selectivity. Ascribed to its superior specificity to G-quadruplex, Din Ir(III)-1 was employed to construct a highly sensitive luminescent pesticides’ detection platform. The detection is based on acetylcholinesterase (AChE)-catalyzed hydrolysis product-induced DNA conformational transformation and subsequent terminal deoxynucleotidyl transferase (TdT) directed G-quadruplex formation. The assay exhibited a linear response between the emission intensity of Din Ir(III)-1 and the pesticide concentration in the range of 0.5-25 μg/L ( R2 = 0.994), and the limit of analyticdetection for the pesticide was as low as 0.37 μg/L when using aldicarb as the model pesticide. Moreover, this strategy demonstrates good applicability for the pesticide detection in real samples. It is also versatile for the detection of other organophosphate or carbamate pesticides, which have the inhibition ability toward AChE. Therefore, the proposed approach is scalable for practical application in food safety and environmental monitoring fields and will provide promising solutions for the assay of pesticide residues.


Back To Top
Search