Steckel, 2018
Larry Steckel, “Dicamba drift problems not an aberration,” Delta Farm Press, August 8, 2018.
SUMMARY:
Veteran Tennessee extension weed scientist Larry Steckel writes about the ongoing drift crisis. He estimates that only 100,000 acres of non-Xtend soybeans remain in the state, and 40% of those are showing injury from dicamba. He stand by efforts of applicators to follow the complicated label instructions, and proposes that volatility and temperature inversions are the cause. FULL TEXT
Bradley, 2018a
Kevin Bradley, “July 15 Dicamba injury update. Different Year, same questions,” University of Missouri, Integrated Pest Management online article, July 19, 2018.
SUMMARY:
First update on 2018 dicamba drift damage. Reports 1.1 million acres of soybeans damaged, and 605 total complaints across all crops. FULL TEXT
Davis and Frisvold, 2017
Adam S. Davis, George B. Frisvold, “Are herbicides a once in a century method of weed control?,” Pest Management Science, 2017, 73:11, DOI: 10.1002/ps.443.
ABSTRACT:
The efficacy of any pesticide is an exhaustible resource that can be depleted over time. For decades, the dominant paradigm – that weed mobility is low relative to insect pests and pathogens, that there is an ample stream of new weed control technologies in the commercial pipeline, and that technology suppliers have sufficient economic incentives and market power to delay resistance – supported a laissez faire approach to herbicide resistance management. Earlier market data bolstered the belief that private incentives and voluntary actions were sufficient to manage resistance. Yet, there has been a steady growth in resistant weeds, while no new commercial herbicide modes of action (MOAs) have been discovered in 30 years. Industry has introduced new herbicide tolerant crops to increase the applicability of older MOAs. Yet, many weed species are already resistant to these compounds. Recent trends suggest a paradigm shift whereby herbicide resistance may impose greater costs to farmers, the environment, and taxpayers than earlier believed. In developed countries, herbicides have been the dominant method of weed control for half a century. Over the next half-century, will widespread resistance to multiple MOAs render herbicides obsolete for many major cropping systems? We suggest it would be prudent to consider the implications of such a low-probability, but high-cost development. FULL TEXT
Gould et al., 2018
Fred Gould, Zachary S. Brown, Jennifer Kuzma, “Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance?,” Science, May 18, 2018, 360: 6390, DOI: 10.1126/science.aar3780.
ABSTRACT:
Resistance to insecticides and herbicides has cost billions of U.S. dollars in the agricultural sector and could result in millions of lives lost to insect-vectored diseases. We mostly continue to use pesticides as if resistance is a temporary issue that will be addressed by commercialization of new pesticides with novel modes of action. However, current evidence suggests that insect and weed evolution may outstrip our ability to replace outmoded chemicals and other control mechanisms. To avoid this outcome, we must address the mix of ecological, genetic, economic, and sociopolitical factors that prevent implementation of sustainable pest management practices. We offer an ambitious proposition. FULL TEXT
Mattix et al., 2007
Mattix KD, Winchester PD, Scherer LR, “Incidence of abdominal wall defects is related to surface water atrazine and nitrate levels,” Journal of Pediatric Surgery, 2007, 42:6, DOI: 10.1016/j.jpedsurg.2007.01.027
ABSTRACT:
BACKGROUND: Gastroschisis and omphalocele are congenital abdominal wall defects (AWD). Atrazine and nitrates are common agricultural fertilizers.
METHODS: The Centers for Disease Control and Prevention natality data set was used to collect data for patients with AWD born between January 1990 and December 2002. Similar data were obtained from the Indiana State Department of Health. An estimated date of conception was calculated by birth date and gestational age. Surface water nitrate and atrazine levels for Indiana were collected from US Geological Survey data. Midwest was defined as Indiana, Illinois, Iowa, Ohio, and Nebraska. Statistical analysis was performed by chi2 test and Pearson correlation for P < or = .05.
RESULTS: The Centers for Disease Control and Prevention identified 9871 children with AWD in 1990 and in 1995-2001 of 35,876,519 live births (rate 2.75/10(5)). In Indiana, 358 children from 1990-2001 had AWD of 1,013,286 live births (rate 3.53/10(5)). The AWD rate in Indiana was significantly higher than the national rate in 1996 (P = .0377), 1998 (P = .0005), and 2001 (P = .0365) and significantly higher than the Midwest rate in 1998 (P = .0104). Monthly comparison demonstrated a positive correlation of AWD rate and mean atrazine levels (P = .0125).
CONCLUSION: Indiana has significantly higher rates of AWD compared with national rates. Increased atrazine levels correlate with increased incidence of AWD.
Skinner et al., 2015
Skinner MK, Guerrero-Bosagna C, Haque MM, “Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations,” Epigenetics, 2015, 10:8, DOI: 10.1080/15592294.2015.1062207.
ABSTRACT
A variety of environmental factors have been shown to induce the epigenetic transgenerational inheritance of disease and phenotypic variation. This involves the germline transmission of epigenetic information between generations. Exposure specific transgenerational sperm epimutations have been previously observed. The current study was designed to investigate the potential role genetic mutations have in the process, using copy number variations (CNV). In the first (F1) generation following exposure, negligible CNV were identified; however, in the transgenerational F3 generation, a significant increase in CNV was observed in the sperm. The genome-wide locations of differential DNA methylation regions (epimutations) and genetic mutations (CNV) were investigated. Observations suggest the environmental induction of the epigenetic transgenerational inheritance of sperm epimutations promote genome instability, such that genetic CNV mutations are acquired in later generations. A combination of epigenetics and genetics is suggested to be involved in the transgenerational phenotypes. The ability of environmental factors to promote epigenetic inheritance that subsequently promotes genetic mutations is a significant advance in our understanding of how the environment impacts disease and evolution. FULL TEXT
Manikkam et al., 2013
Mohan Manikkam, Rebecca Tracey, Carlos Guerrero-Bosagna, Michael K. Skinner , “Plastics Derived Endocrine Disruptors (BPA, DEHP and DBP) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations,” PLoS ONE, January 24, 2013, 8:1, DOI: 10.1371/journal.pone.0055387
ABSTRACT:
Environmental compounds are known to promote epigenetic transgenerational inheritance of adult onset disease in subsequent generations (F1–F3) following ancestral exposure during fetal gonadal sex determination. The current study was designed to determine if a mixture of plastic derived endocrine disruptor compounds bisphenol-A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) at two different doses promoted epigenetic transgenerational inheritance of adult onset disease and associated DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to either the “plastics” or “lower dose plastics” mixture during embryonic days 8 to 14 of gonadal sex determination and the incidence of adult onset disease was evaluated in F1 and F3 generation rats. There were significant increases in the incidence of total disease/abnormalities in F1 and F3 generation male and female animals from plastics lineages. Pubertal abnormalities, testis disease, obesity, and ovarian disease (primary ovarian insufficiency and polycystic ovaries) were increased in the F3 generation animals. Kidney and prostate disease were only observed in the direct fetally exposed F1 generation plastic lineage animals. Analysis of the plastics lineage F3 generation sperm epigenome previously identified 197 differential DNA methylation regions (DMR) in gene promoters, termed epimutations. A number of these transgenerational DMR form a unique direct connection gene network and have previously been shown to correlate with the pathologies identified. Observations demonstrate that a mixture of plastic derived compounds, BPA and phthalates, can promote epigenetic transgenerational inheritance of adult onset disease. The sperm DMR provide potential epigenetic biomarkers for transgenerational disease and/or ancestral environmental exposures. FULL TEXT
Manikkam et al., 2012c
Mohan Manikkam, Rebecca Tracey, Carlos Guerrero-Bosagna, Michael K. Skinner , “Dioxin (TCDD) Induces Epigenetic Transgenerational Inheritance of Adult Onset Disease and Sperm Epimutations,” PLoS ONE, 2012, 7:9, DOI: 10.1371/journal.pone.0046249.
ABSTRACT:
Environmental compounds can promote epigenetic transgenerational inheritance of adult-onset disease in subsequent generations following ancestral exposure during fetal gonadal sex determination. The current study examined the ability of dioxin (2,3,7,8-tetrachlorodibenzo[p]dioxin, TCDD) to promote epigenetic transgenerational inheritance of disease and DNA methylation epimutations in sperm. Gestating F0 generation females were exposed to dioxin during fetal day 8 to 14 and adult-onset disease was evaluated in F1 and F3 generation rats. The incidences of total disease and multiple disease increased in F1 and F3 generations. Prostate disease, ovarian primordial follicle loss and polycystic ovary disease were increased in F1 generation dioxin lineage. Kidney disease in males, pubertal abnormalities in females, ovarian primordial follicle loss and polycystic ovary disease were increased in F3 generation dioxin lineage animals. Analysis of the F3 generation sperm epigenome identified 50 differentially DNA methylated regions (DMR) in gene promoters. These DMR provide potential epigenetic biomarkers for transgenerational disease and ancestral environmental exposures. Observations demonstrate dioxin exposure of a gestating female promotes epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. FULL TEXT
Simon-Delso et al., 2015
N. Simon-Delso,corresponding author V. Amaral-Rogers, L. P. Belzunces, J. M. Bonmatin, M. Chagnon, C. Downs, L. Furlan, D. W. Gibbons, C. Giorio, V. Girolami, D. Goulson, D. P. Kreutzweiser, C. H. Krupke, M. Liess, E. Long, M. McField, P. Mineau, E. A. D. Mitchell, C. A. Morrissey, D. A. Noome, L. Pisa, J. Settele, J. D. Stark, A. Tapparo, H. Van Dyck, J. Van Praagh, J. P. Van der Sluijs, P. R. Whitehorn, and M. Wiemers, “Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites,” Environmental Science and Pollution Research International, 2015; 22, DOI: 10.1007/s11356-014-3470-y
ABSTRACT:
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts. FULL TEXT
Liebman et al., 2016
Matt Liebman, Bàrbara Baraibar, Yvonne Buckley, Dylan Childs, Svend Christensen, Roger Cousens, Hanan Eizenberg, Sanne Heijting, Donato Loddo, Aldo Merotto Jr, Michael Renton, Marleen Riemens, “Ecologically sustainable weed management: How do we get from proof-of-concept to adoption?,” Ecological Applications, 26:5, 2016, DOI: 10.1002/15-0995
ABSTRACT:
Weed management is a critically important activity on both agricultural and non‐agricultural lands, but it is faced with a daunting set of challenges: environmental damage caused by control practices, weed resistance to herbicides, accelerated rates of weed dispersal through global trade, and greater weed impacts due to changes in climate and land use. Broad‐scale use of new approaches is needed if weed management is to be successful in the coming era. We examine three approaches likely to prove useful for addressing current and future challenges from weeds: diversifying weed management strategies with multiple complementary tactics, developing crop genotypes for enhanced weed suppression, and tailoring management strategies to better accommodate variability in weed spatial distributions. In all three cases, proof‐of‐concept has long been demonstrated and considerable scientific innovations have been made, but uptake by farmers and land managers has been extremely limited. Impediments to employing these and other ecologically based approaches include inadequate or inappropriate government policy instruments, a lack of market mechanisms, and a paucity of social infrastructure with which to influence learning, decision‐making, and actions by farmers and land managers. We offer examples of how these impediments are being addressed in different parts of the world, but note that there is no clear formula for determining which sets of policies, market mechanisms, and educational activities will be effective in various locations. Implementing new approaches for weed management will require multidisciplinary teams comprised of scientists, engineers, economists, sociologists, educators, farmers, land managers, industry personnel, policy makers, and others willing to focus on weeds within whole farming systems and land management units. FULL TEXT