Krüger et al., 2014
Monika Krüger, Philipp Schledorn, Wieland Schrödl, Hans-Wolfgang Hoppe, Walburga Lutz, and Awad A. Shehata, “Detection of Glyphosate Residues in Animals and Humans,” Journal of Environmental and Analytical Toxicology, 2014, 4:2, DOI: 10.4172/2161-0525.1000210.
ABSTRACT:
In the present study glyphosate residues were tested in urine and different organs of dairy cows as well as in urine of hares, rabbits and humans using ELISA and Gas Chromatography-Mass Spectroscopy (GC-MS). The correlation coefficients between ELISA and GC-MS were 0.96, 0.87, 0.97and 0.96 for cattle, human, and rabbit urine and organs, respectively. The recovery rate of glyphosate in spiked meat using ELISA was 91%. Glyphosate excretion in German
dairy cows was significantly lower than Danish cows. Cows kept in genetically modified free area had significantly lower glyphosate concentrations in urine than conventional husbandry cows. Also glyphosate was detected in different organs of slaughtered cows as intestine, liver, muscles, spleen and kidney. Fattening rabbits showed significantly higher glyphosate residues in urine than hares. Moreover, glyphosate was significantly higher in urine of humans with
conventional feeding. Furthermore, chronically ill humans showed significantly higher glyphosate residues in urine than healthy population. The presence of glyphosate residues in both humans and animals could haul the entire population towards numerous health hazards, studying the impact of glyphosate residues on health is warranted and the global regulations for the use of glyphosate may have to be re-evaluated. FULL TEXT
De Roos et al., 2005
Anneclaire J. De Roos, Aaron Blair, Jennifer A. Rusiecki, Jane A. Hoppin, Megan Svec, Mustafa Dosemeci, Dale P. Sandler, and Michael C. Alavanja, “Cancer Incidence among Glyphosate-Exposed Pesticide Applicators in the Agricultural Health Study,” Environmental Health Perspectives, 2005, 113, DOI: 10.1289/EHP.7340.
ABSTRACT:
Glyphosate is a broad-spectrum herbicide that is one of the most frequently applied pesticides in the world. Although there has been little consistent evidence of genotoxicity or carcinogenicity from in vitro and animal studies, a few epidemiologic reports have indicated potential health effects of glyphosate. We evaluated associations between glyphosate exposure and cancer incidence in the Agricultural Health Study (AHS), a prospective cohort study of 57,311 licensed pesticide applicators in Iowa and North Carolina. Detailed information on pesticide use and other factors was obtained from a self-administered questionnaire completed at time of enrollment (1993–1997). Among private and commercial applicators, 75.5% reported having ever used glyphosate, of which > 97% were men. In this analysis, glyphosate exposure was defined as a) ever personally mixed or applied products containing glyphosate; b) cumulative lifetime days of use, or “cumulative exposure days” (years of use × days/year); and c) intensity-weighted cumulative exposure days (years of use × days/year × estimated intensity level). Poisson regression was used to estimate exposure–response relations between glyphosate and incidence of all cancers combined and 12 relatively common cancer subtypes. Glyphosate exposure was not associated with cancer incidence overall or with most of the cancer subtypes we studied. There was a suggested association with multiple myeloma incidence that should be followed up as more cases occur in the AHS. Given the widespread use of glyphosate, future analyses of the AHS will allow further examination of long-term health effects, including less common cancers. FULL TEXT
Paganelli et al., 2010
Alejandra Paganelli, Victoria Gnazzo, Helena Acosta, Silvia L. López, and Andrés E. Carrasco, “Glyphosate-Based Herbicides Produce Teratogenic Effects on Vertebrates by Impairing Retinoic Acid Signaling,” Chemical Research in Toxicology, 2010, 23:10, DOI: 10.1021/TX1001749.
ABSTRACT:
The broad spectrum herbicide glyphosate is widely used in agriculture worldwide. There has been ongoing controversy regarding the possible adverse effects of glyphosate on the environment and on human health. Reports of neural defects and craniofacial malformations from regions where glyphosate-based herbicides (GBH) are used led us to undertake an embryological approach to explore the effects of low doses of glyphosate in development. Xenopus laevis embryos were incubated with 1/5000 dilutions of a commercial GBH. The treated embryos were highly abnormal with marked alterations in cephalic and neural crest development and shortening of the anterior−posterior (A-P) axis. Alterations on neural crest markers were later correlated with deformities in the cranial cartilages at tadpole stages. Embryos injected with pure glyphosate showed very similar phenotypes. Moreover, GBH produced similar effects in chicken embryos, showing a gradual loss of rhombomere domains, reduction of the optic vesicles, and microcephaly. This suggests that glyphosate itself was responsible for the phenotypes observed, rather than a surfactant or other component of the commercial formulation. A reporter gene assay revealed that GBH treatment increased endogenous retinoic acid (RA) activity in Xenopus embryos and cotreatment with a RA antagonist rescued the teratogenic effects of the GBH. Therefore, we conclude that the phenotypes produced by GBH are mainly a consequence of the increase of endogenous retinoid activity. This is consistent with the decrease of Sonic hedgehog (Shh) signaling from the embryonic dorsal midline, with the inhibition of otx2 expression and with the disruption of cephalic neural crest development. The direct effect of glyphosate on early mechanisms of morphogenesis in vertebrate embryos opens concerns about the clinical findings from human offspring in populations exposed to GBH in agricultural fields. FULL TEXT
Bohn et al., 2014
T. Bøhn, , M. Cuhra, T. Traavik, M. Sanden, J. Fagan, R. Primicerio, “Compositional differences in soybeans on the market: Glyphosate accumulates in Roundup Ready GM soybeans,” Food Chemistry, 2014, 153, DOI: 10.1016/J.FOODCHEM.2013.12.054.
ABSTRACT:
This article describes the nutrient and elemental composition, including residues of herbicides and pesticides, of 31 soybean batches from Iowa, USA. The soy samples were grouped into three different categories: (i) genetically modified, glyphosate-tolerant soy (GM-soy); (ii) unmodified soy cultivated using a conventional ‘‘chemical’’ cultivation regime; and (iii) unmodified soy cultivated using an organic cultivation regime. Organic soybeans showed the healthiest nutritional profile with more sugars, such as glucose, fructose, sucrose and maltose, significantly more total protein, zinc and less fibre than both conventional and GM-soy. Organic soybeans also contained less total saturated fat and total omega-6 fatty acids than both conventional and GM-soy. GM-soy contained high residues of glyphosate and AMPA (mean 3.3 and 5.7 mg/kg, respectively). Conventional and organic soybean batches contained none of these agrochemicals. Using 35 different nutritional and elemental variables to characterise each soy sample, we were able to discriminate GM, conventional and organic soybeans without exception, demonstrating ‘‘substantial non-equivalence’’ in compositional characteristics for ‘ready-to-market’ soybeans. FULL TEXT
Soloneski et al., 2016
Sonia Soloneski, Celeste Ruiz de Arcaute, and Marcelo L. Larramendy, “Genotoxic effect of a binary mixture of dicamba and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae,” Environmental Science and Pollution Research, 2016, 23:17, DOI: 10.1007/S11356-016-6992-7.
ABSTRACT:
The acute toxicity of two herbicide formulations, namely, the 57.71 % dicamba (DIC)-based Banvel(®) and the 48 % glyphosate (GLY)-based Credit(®), alone as well as the binary mixture of these herbicides was evaluated on late-stage Rhinella arenarum larvae (stage 36) exposed under laboratory conditions. Mortality was used as an endpoint for determining acute lethal effects, whereas the single-cell gel electrophoresis (SCGE) assay was employed as genotoxic endpoint to study sublethal effects. Lethality studies revealed LC5096 h values of 358.44 and 78.18 mg L(-1) DIC and GLY for Banvel(®) and Credit(®), respectively. SCGE assay revealed, after exposure for 96 h to either 5 and 10 % of the Banvel(®) LC5096 h concentration or 5 and 10 % of the Credit(®) LC5096 h concentration, an equal significant increase of the genetic damage index (GDI) regardless of the concentration of the herbicide assayed. The binary mixtures of 5 % Banvel(®) plus 5 % Credit(®) LC5096 h concentrations and 10 % Banvel(®) plus 10 % Credit(®) LC5096 h concentrations induced equivalent significant increases in the GDI in regard to GDI values from late-stage larvae exposed only to Banvel(®) or Credit(®). This study represents the first experimental evidence of acute lethal and sublethal effects exerted by DIC on the species, as well as the induction of primary DNA breaks by this herbicide in amphibians. Finally, a synergistic effect of the mixture of GLY and DIC on the induction of primary DNA breaks on circulating blood cells of R. arenarum late-stage larvae could be demonstrated. FULL TEXT
Szekacs and Darvas, 2012
András Székács and Béla Darvas, “Forty Years with Glyphosate,” 2010, in Herbicides- Properties, Synthesis, and Control of Weeds, edited by Mohammed Naguib Abd El-Ghany Hasaneen.
ABSTRACT:
Not Available
Dill et al., 2010
Gerald M. Dill, R. Douglas Sammons, Paul C. C. Feng, Frank Kohn, Keith Kretzmer, Akbar Mehrsheikh, Marion Bleeke, Joy L. Honegger, Donna Farmer, Dan Wright, and Eric A. Haupfear, “Glyphosate: Discovery, Development, Applications, and Properties,” 2010, in Glyphosate Resistance in Crops and Weeds: History, Development, and Management, Edited by Vijay K. Nandula.
ABSTRACT:
Not Avaialble
Markel et al., 2015
Markel TA, Proctor C, Ying J, Winchester PD, “Environmental pesticides increase the risk of developing hypertrophic pyloric stenosis,” Journal of Pediatric Surgery, 2015, 50:8, DOI: 10.1016/J.JPEDSURG.2014.12.009.
ABSTRACT:
BACKGROUND: Hypertrophic pyloric stenosis (HPS) is a condition noted within the first several weeks of life that results in hypertrophy of the pyloric muscle between the stomach and duodenum. The etiology has not been elucidated but genetic and environmental influences are suspected. We hypothesized that agricultural pesticides would be associated with an increased incidence of pyloric stenosis.
STUDY DESIGN: Data from infants with HPS were obtained from the Indiana Birth Defects Registry (IBDR) for all counties in Indiana from 2005 to 2009. Data from all live births were obtained from the Indiana State Health Department (ISHD). Maternal demographics and clinical characteristics of infants were abstracted. The US Geological Survey (USGS) provided estimated use of agricultural pesticides (EPEST), and these values were correlated with HPS incidence. Univariate and multivariate logistical regression models were used to assess the association between HPS risk and pesticide use.
RESULTS: A total of 442,329 newborns were studied with 1313 HPS cases recorded. The incidence of HPS was 30/10,000 live births. HPS incidence was correlated with total county pesticide use, as well as subcategories of pesticides (fungicides, fumigants, insecticides, herbicides). Indiana counties were then divided into low, moderate and high pesticide use (mean±standard deviation: 127,722±73,374, 308,401±36,915, and 482,008±97,260pounds of pesticides). Incidence of HPS was 26, 29, and 36 cases per 10,000 in low, moderate and high pesticide-use counties respectively. Subset analysis showed that the positive association between HPS and county pesticide use was more likely for male infants from mothers who were white, aged 20-35 years, had education at high school or lower, and smoked (p<0.05).
CONCLUSION: Pesticide use correlated significantly with incidence of HPS. Positive correlations between HPS risk and pesticide use were found for most risk factors. Further studies will be needed to verify our findings and further delineate the nature of this correlation.
Reigart and Roberts, 2013
Reigart, Routt, Roberts, James, “Recognition and Management of Pesticide Poisoning,” US EPA Office of Pesticide Programs, 2013, Sixth Edition.
ABSTRACT:
Not Available
Reigart and Roberts, 2001
Reigart, Routt, Roberts, James, “Pesticides in Children,” Pediatric Clinics of North America, 2001, 48:5, DOI: 10.1016/S0031-3955(05)70368-0.
ABSTRACT:
The term pesticide includes various agents devised to control a wide range of pests. Although the public perception of pesticides is often that pesticide is synonymous with insecticide, most pesticide usage and much acute and chronic toxicity from pesticides are not related to insecticidal agents. Other important classes of pesticide agents are herbicides (for plants), fungicides (for fungi), nematocides (for nematodes), and rodenticides (for rodents). An additional important class is the fumigants, highly toxic volatile agents or gases that are used as broad-spectrum killing agents for many forms of plant and animal life. Although most pesticide agents are synthetic chemical toxicants, a significant and increasing proportion are biologic agents, such as Bacillus thuringiensis, a microbial insecticide. In addition, sulfur and other elemental chemicals have been used as pest-control agents but usually are not considered as “conventional” pesticides.
The most recent (1997) US Environmental Protection Agency (EPA) estimate of pesticide usage in the United States was 443 million kg (975 million lb) of active ingredient.3 Of this enormous total, approximately 66% were herbicides and fungicides, which tend to have low acute toxicity in humans but may be persistent in the environment and in the human body. Some of these agents, including, for instance, vinclozolin, a fungicide, and atrazine, an herbicide, also are thought to be endocrine disruptor agents.
Children in the United States and elsewhere are exposed to enormous quantities of pesticides of various types, by multiple routes. Although some of this exposure is by ingestion of food and water—routes that are considered by the public to be primary—much exposure occurs in homes, gardens, and schools. A total of 34.5 million kg (76 million lb) of active pesticide ingredients were used in home and garden settings in this survey. Approximately 75% of home and garden pesticides are herbicides and fungicides, and approximately 22% are insecticides. The insecticides most used in homes and gardens are diazinon and chlorpyrifos, both organophosphates, and carbaryl, an anticholinesterase carbamate. Recent decisions by the EPA to remove the approval for usage of diazinon and chlorpyrifos in homes and gardens is likely to cause a significant shift in patterns of insecticide usage. It is likely that there will be significant increases in the use of pyrethroid compounds, requiring more intense evaluation of the risks of these compounds to infants and children.
Although there is considerable public concern over pesticide usage and exposure, the quantity of pesticides used each year has remained relatively constant over the past 20 years. The concerns shared by the public, environmental activists, and many scientists have not resulted in appreciable decreases in usage of pesticides or in children’s exposure to pesticides.
In considering pediatric pesticide effects, it is essential to attend to issues of exposure and effect. Because children differ from adults in behavior, physiology, and physical configuration, their patterns of exposure are dramatically different. Likewise, differences in the biology of children, particularly as related to developmental effects, result in quantitatively and qualitatively different responses to pesticide exposure. In the case of children, a further important complication is the need to assess the risks for subclinical effects that may lead to lifetime morbidity. This morbidity may occur in the absence of the acute poisoning symptoms that often have dominated the consideration of pesticide effects on children.